Molecular Biology

Breadcrumb Navigation



(descending by date; Pubmed search for “korber p NOT korber pe” yields only publications by Philipp Korber)

* corresponding author(s)
# shared first authors

Research papers

Establishment and function of chromatin organization at replication origins.
Chacin E, Reusswig KU, Furtmeier J, Bansal P, Karl LA, Pfander B, Straub T, Korber P, Kurat CF*. Nature. 2023 Apr;616(7958):836-842. doi: 10.1038/s41586-023-05926-8. Epub 2023 Apr 5. PMID: 37020028

Nucleosome Remodeling at the Yeast PHO8 and PHO84 Promoters without the Putatively Essential SWI/SNF Remodeler.
Lieleg C, Novacic A, Musladin S, Schmid A, Akpinar GG, Barbaric S, Korber P*. Int J Mol Sci. 2023 Mar 3;24(5):4949. doi: 10.3390/ijms24054949. PMID: 36902382

ORE-Seq: Genome-Wide Absolute Occupancy Measurement by Restriction Enzyme Accessibilities.
Oberbeckmann E#, Wolff MR#, Krietenstein N, Heron M, Schmid A, Straub T, Gerland U, Korber P. Methods Mol Biol. 2023;2611:121-152. doi: 10.1007/978-1-0716-2899-7_9. PMID: 36807068

Differences in nanoscale organization of regulatory active and inactive human chromatin.
Brandstetter K#, Zülske T#, Ragoczy T, Hörl D, Guirao-Ortiz M, Steinek C, Barnes T, Stumberger G, Schwach J, Haugen E, Rynes E, Korber P, Stamatoyannopoulos JA, Leonhardt H, Wedemann G*, Harz H*. Biophys J. 2022 Mar 15;121(6):977-990. doi: 10.1016/j.bpj.2022.02.009. Epub 2022 Feb 10. PMID: 351506

Barnes T and Korber P* (2021) The Active Mechanism of Nucleosome Depletion by Poly(dA:dT) Tracts In Vivo. Int J Mol Sci 22. doi: 10.3390/ijms22158233

Oberbeckmann E#, Krietenstein N#, Niebauer V, Wang Y, Schall K, Moldt M, Straub T, Rohs R, Hopfner KP*, Korber P* and Eustermann S* (2021) Genome information processing by the INO80 chromatin remodeler positions nucleosomes. Nat Commun 12:3231. doi: 10.1038/s41467-021-23016-z

Oberbeckmann E#, Niebauer V#, Watanabe S, Farnung L, Moldt M, Schmid A, Cramer P, Peterson CL, Eustermann S*, Hopfner KP* and Korber P* (2021) Ruler elements in chromatin remodelers set nucleosome array spacing and phasing. Nat Commun 12:3232. doi: 10.1038/s41467-021-23015-0

Wolff MR, Schmid A, Korber P* and Gerland U* (2021) Effective dynamics of nucleosome configurations at the yeast PHO5 promoter. Elife 10. doi: 10.7554/eLife.58394

Oberbeckmann E#, Wolff M#, Krietenstein N, Heron M, Ellins JL, Schmid A, Krebs S, Blum H, Gerland U, Korber P*. Absolute nucleosome occupancy map for the Saccharomyces cerevisiae genome. Genome Res. 2019 Dec;29(12) 1996-2009.

Schaeffner M, Mrozek-Gorska P, Buschle A, Woellmer A, Tagawa T, Cernilogar FM, Schotta G, Krietenstein N, Lieleg C, Korber P, Hammerschmidt W*. BZLF1 interacts with chromatin remodelers promoting escape from latent infections with EBV. Life Sci Alliance. 2019 Apr;2(2) . doi:10.26508/lsa.201800108.

Knoll KR, Eustermann S, Niebauer V, Oberbeckmann E, Stoehr G, Schall K, Tosi A, Schwarz M, Buchfellner A, Korber P, Hopfner KP*. The nuclear actin-containing Arp8 module is a linker DNA sensor driving INO80 chromatin remodeling. Nat Struct Mol Biol. 2018 Sep;25(9) 823-832.

Atkinson SR#, Marguerat S#, Bitton DA#, Rodríguez-López M, Rallis C, Lemay JF, Cotobal C, Cotobal C, Malecki M, Smialowski P, Mata J, Korber P, Bachand F, Bähler J*. Long noncoding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease, and RNAi in fission yeast. RNA. 2018 Sep;24(9) 1195-1213.
Funke#, JJ, Ketterer#, P, Lieleg#, C, Schunter, S, Korber*, P, and Dietz*, H Uncovering the forces between nucleosomes using DNA origami. Science Advances, 2016 Nov 23; 2(11): e1600974. DOI: 10.1126/sciadv.1600974

Funke, JJ, Ketterer, P, Lieleg, C, Korber, P, and Dietz*, H Exploring nucleosome unwrapping using DNA origami. 2016 ACS Nano Letters Nov 9. DOI: 10.1021/acs.nanolett.6b04169

Krietenstein#, N, Wal#, M, Watanabe, S, Park, B, Peterson, CL, Pugh*, BF, and Korber*, P Genomic Nucleosome Organization Reconstituted with Pure Proteins. Cell 2016 Oct 20; 167(3): 709-721.

Lieleg C, Ketterer P, Nuebler J, Ludwigsen J, Gerland U, Dietz H, Mueller-Planitz* F, Korber* P. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density. Mol Cell Biol. 2015 May;35(9):1588-605.

Osberg# B, Nuebler# J, Korber P, Gerland* U. Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays. Nucleic Acids Res. 2014 Dec 16;42(22):13633-45.

Ansari SA, Paul E, Sommer S, Lieleg C, He Q, Daly AZ, Rode KA, Barber WT, Ellis LC, LaPorta E, Orzechowski AM, Taylor E, Reeb T, Wong J, Korber P, Morse* RH. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast. J Biol Chem. 2014 May 23;289(21):14981-95.

Musladin S, Krietenstein N, Korber* P, Barbaric S. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening. Nucleic Acids Res. 2014 Apr;42(7):4270-82.

Pointner# J, Persson# J, Prasad# P, Norman-Axelsson U, Strålfors A, Khorosjutina O, Krietenstein N, Svensson JP, Ekwall* K, Korber* P. CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J. 2012 Nov 28;31(23):4388-403.

Barrales RR, Korber P, Jimenez J, Ibeas* JI. Chromatin modulation at the FLO11 promoter of Saccharomyces cerevisiae by HDAC and Swi/Snf complexes. Genetics. 2012 Jul;191(3):791-803.

Zhang# Z, Wippo# CJ, Wal M, Ward E, Korber* P, Pugh* BF. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science. 2011 May 20;332(6032):977-80.

Wippo CJ, Israel L, Watanabe S, Hochheimer A, Peterson CL, Korber* P. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J. 2011 Apr 6;30(7):1277-88.

Ertel F, Dirac-Svejstrup AB, Hertel CB, Blaschke D, Svejstrup JQ, Korber* P. In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition in vivo. Mol Cell Biol. 2010 Aug;30(16):4060-76.

Lantermann# AB, Straub# T, Strålfors A, Yuan GC, Ekwall* K, Korber* P. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol. 2010 Feb;17(2):251-7.

Wippo CJ, Krstulovic BS, Ertel F, Musladin S, Blaschke D, Stürzl S, Yuan GC, Hörz W, Korber* P, Barbaric S. Differential cofactor requirements for histone eviction from two nucleosomes at the yeast PHO84 promoter are determined by intrinsic nucleosome stability. Mol Cell Biol. 2009 Jun;29(11):2960-81.

Barbaric# S, Luckenbach# T, Schmid A, Blaschke D, Hörz W, Korber* P. Redundancy of chromatin remodeling pathways for the induction of the yeast PHO5 promoter in vivo. J Biol Chem. 2007 Sep 21;282(38):27610-21.

Korber* P, Barbaric S, Luckenbach T, Schmid A, Schermer UJ, Blaschke D, Hörz W. The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters. J Biol Chem. 2006 Mar 3;281(9):5539-45.

Hertel CB, Längst G, Hörz W, Korber* P. Nucleosome stability at the yeast PHO5 and PHO8 promoters correlates with differential cofactor requirements for chromatin opening. Mol Cell Biol. 2005 Dec;25(24):10755-67.

Schermer UJ, Korber* P, Hörz W. Histones are incorporated in trans during reassembly of the yeast PHO5 promoter. Mol Cell. 2005 Jul 22;19(2):279-85.

Korber P, Luckenbach T, Blaschke D, Hörz* W. Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter. Mol Cell Biol. 2004 Dec;24(24):10965-74.

Korber P, Hörz* W. In vitro assembly of the characteristic chromatin organization at the yeast PHO5 promoter by a replication-independent extract system. J Biol Chem. 2004 Aug 13;279(33):35113-20.


Baldi S, Korber P, Becker PB*. Beads on a string-nucleosome array arrangements and folding of the chromatin fiber. Nat Struct Mol Biol. 2020 Feb;27(2) 109-118.

Lieleg C, Krietenstein N, Walker M, Korber* P. Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma. 2015 Jun;124(2):131-51.

Korber* P, Barbaric S. The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res. 2014;42(17):10888-902.

Korber* P. Active nucleosome positioning beyond intrinsic biophysics is revealed by in vitro reconstitution. Biochem Soc Trans. 2012 Apr;40(2):377-82.

Korber* P, Becker* PB. Nucleosome dynamics and epigenetic stability. Essays Biochem. 2010 Sep 20;48(1):63-74.

Korber P, Hörz* W. SWRred not shaken; mixing the histones. Cell. 2004 Apr 2;117(1):5-7.

Method papers

Krietenstein N, Wippo CJ, Lieleg C, Korber* P. Genome-wide in vitro reconstitution of yeast chromatin with in vivo-like nucleosome positioning. Methods Enzymol. 2012;513:205-32.

Wippo CJ, Korber* P. In vitro reconstitution of in vivo-like nucleosome positioning on yeast DNA. Methods Mol Biol. 2012;833:271-87.

Lantermann A, Strålfors A, Fagerström-Billai F, Korber* P, Ekwall* K. Genome-wide mapping of nucleosome positions in Schizosaccharomyces pombe. Methods. 2009 Jul;48(3):218-25.

Related to Philipp Korber’s PhD work

Jiang L, Schaffitzel C, Bingel-Erlenmeyer R, Ban N, Korber P, Koning RI, de Geus DC, Plaisier JR, Abrahams* JP. Recycling of aborted ribosomal 50S subunit-nascent chain-tRNA complexes by the heat shock protein Hsp15. J Mol Biol. 2009 Mar 13;386(5):1357-67.

Staker BL, Korber P, Bardwell* JC, Saper* MA. Structure of Hsp15 reveals a novel RNA-binding motif. EMBO J. 2000 Feb 15;19(4):749-57.

Korber P, Stahl JM, Nierhaus KH, Bardwell* JC. Hsp15: a ribosome-associated heat shock protein. EMBO J. 2000 Feb 15;19(4):741-8.

Korber P, Zander T, Herschlag D, Bardwell* JC. A new heat shock protein that binds nucleic acids. J Biol Chem. 1999 Jan 1;274(1):249-56.

Grauschopf U, Winther JR, Korber P, Zander T, Dallinger P, Bardwell* JC. Why is DsbA such an oxidizing disulfide catalyst? Cell. 1995 Dec 15;83(6):947-55.